MRI Urinary System


Magnetic resonance (MR) urography

Magnetic resonance (MR) urography is a technique with a high sensibility for the study of the urinary system. 
MR urography comprises an evolving group of techniques with the potential for allowing optimal noninvasive evaluation of many abnormalities of the urinary tract. 
MR urography has the potential to replace traditional diagnostic methods which use ionising radiation in paediatric patients. 
MR urography is currently considered the method of choice for imaging of the renal parenchyma and the collecting systems in patients who cannot undergo routine radiographic studies such as pregnant women, pediatric patients, patients allergic to iodinated contrast agents, or patients with impaired renal function. 
The ability of MR imaging to provide quantitative functional information (e.g., on blood flow, perfusion, glomerular filtration rate, and excretion as well as urine drainage) in addition to morphologic assessment of the parenchyma and the collecting system could lead to a single, "all-in-one approach" examination technique.

  MR urography is clinically useful in the evaluation of suspected urinary tract obstruction, hematuria, and congenital anomalies, as well as surgically altered anatomy, and can be particularly beneficial in pediatric or pregnant patients or when ionizing radiation is to be avoided. 
The most common MR urographic techniques for displaying the urinary tract can be divided into two categories: static-fluid MR urography and excretory MR urography. Static-fluid MR urography makes use of heavily T2-weighted sequences to image the urinary tract as a static collection of fluid, can be repeated sequentially (cine MR urography) to better demonstrate the ureters in their entirety and to confirm the presence of fixed stenoses, and is most successful in patients with dilated or obstructed collecting systems. 
Excretory MR urography is performed during the excretory phase of enhancement after the intravenous administration of gadolinium-based contrast material; thus, the patient must have sufficient renal function to allow the excretion and even distribution of the contrast material. 
Diuretic administration is an important adjunct to excretory MR urography, which can better demonstrate nondilated systems. Static-fluid and excretory MR urography can be combined with conventional MR imaging for comprehensive evaluation of the urinary tract.